Discriminação algorítmica na relação de emprego

eficiência econômica, inteligência artificial e fragilidade do empregado

Autores

DOI:

https://doi.org/10.70405/rtst.v90i2.67

Palavras-chave:

Inteligência artificial, Eficiência econômica, Discriminação algorítmica

Resumo

A pesquisa busca verificar quais as peculiaridades da relação de emprego que a tornariam mais suscetíveis ou frágeis quanto à ocorrência de discriminação algorítmica. Como resultados da pesquisa, verificou-se que o uso da IA depende do volume, da velocidade e do valor dos dados fornecidos pelo Big Data, gerando resultados tão bons quanto forem os dados. Além disso, entendeu-se que, apesar de buscar objetividade, os algoritmos podem causar discriminação por meio de um erro na programação, generalização, uso de informações sensíveis e limitação de direitos. Por fim, considerou-se que as relações de emprego possuem peculiaridades que tornam o empregado mais suscetível à discriminação algorítmica, por exemplo a desigualdade entre as partes; a fragilidade do empregado, diante de um legítimo poder de controle; e a nudez tecnológica, tendo em vista a quantidade de dados, inclusive desnecessários, em posse do empregador. Como metodologia, utilizou-se a pesquisa de natureza descritiva, exploratória e interpretativa, de cunho qualitativo, mediante análise documental e bibliográfica, valendo-se da utilização do método hipotético-dedutivo.

Biografia do Autor

João Luís Nogueira Matias, Universidade Federal do Ceará

Doutor em Direito Comercial pela Universidade de São Paulo; doutor em Direito público pela Universidade Federal de Pernambuco; mestre em Direito e desenvolvimento pela Universidade Federal do Ceará; MBA em gestão de empresas FGV/MARPE; professor titular da Universidade Federal do Ceará e do Centro Universitário 7 de Setembro - UNI7.

Ricardo Antônio Maia de Morais Júnior, Centro Universitário 7 de Setembro

Mestre em Ordem Jurídica Constitucional pela Universidade Federal do Ceará; professor do Centro Universitário 7 de Setembro – Uni7; especialista em Direito Empresarial pela Fundação Getúlio Vargas – FGV.

Referências

ALOISI, Antonio; GRAMANO, Elena. Artificial intelligence is watching you at work. Digital surveillance, employee monitoring and regulatory issues in the EU context. Special Issue of Comparative Labor Law & Policy Journal, “Automation, Artificial Intelligence and Labour Protection”, 2019, p. 105-106. Disponível em: http://salus.adapt.it/wp-content/uploads/2020/07/Gramano-Alois_AI-is-Wathching-you_2019.pdf. Acesso em: 3 set. 2021.

BELMONTE, Alexandre Agra. O monitoramento da correspondência eletrônica nas relações de trabalho. LTr, 2004.

BODIE, Matthew T. et al. The law and policy of people analytics. University of Colorado Law Review, v. 88, 2016, p. 3. Disponível em: https://scholarship.law.slu.edu/cgi/viewcontent.cgi?article=1001&context=faculty. Acesso em: 3 set. 2021.

DELGADO, Mauricio Godinho. O poder empregatício. São Paulo: LTr, 1996.

DOMINGOS, Pedro. O algoritmo mestre: como a busca pelo algoritmo de machine learning definitivo recriará nosso mundo. São Paulo: Novatec Editora, 2017.

DONEDA, Danilo Cesar Maganhoto et al. Considerações iniciais sobre inteligência artificial, ética e autonomia pessoal. Pensar-Revista de Ciências Jurídicas, v. 23, n. 4, p. 1-17, 2018. DOI: https://doi.org/10.5020/2317-2150.2018.8257

ERNST, Ekkehard et al. The economics of artificial intelligence: Implications for the future of work, ILO Future of Work Research paper Series; ILO, 2018.

GARRIDO, Giovanna; SILVEIRA, Rafael Damasco; SILVEIRA, Marco Antonio. People Analytics: uma abordagem estratégica para a gestão do capital humano. Revista Eletrônica de Estratégia & Negócios, v. 11, n. 1, p. 28-52, 2018. DOI: https://doi.org/10.19177/reen.v11e01201828-52

KAPLAN, Andreas; HAENLEIN, Michael. Siri, Siri, in my hand: who's the fairest in the land? On interpretations, illustrations, and implications of artificial intelligence. Business Horizons, [s.I.], v. 62, n. 1, p. 15-25, jan. 2018. Elsevier BV. Disponível em: http://dx.doi.org/10.1016/j.bushor.2018.08.004. Acesso em: 2 set. 2021. DOI: https://doi.org/10.1016/j.bushor.2018.08.004

KROLL, Joshua Alexander. et al. Accountable algorithms. University of Pennsylvania Law Review, v. 165, p. 633-705, 2017.

MAYER-SCHÖNBERGER, V.; CUKIER, K. Big Data: A Revolution That Will Transform How We Live, Work, and Think. New York: First Mariner Books, 2014.

MENDES, Laura Schertel; MATTIUZZO, Marcela. Discriminação Algorítmica: Conceito, Fundamento Legal e Tipologia. Direito Público, v. 16, n. 90, 2019.

MOREIRA, Teresa Coelho. A privacidade dos trabalhadores e as novas tecnologias de informação e comunicação: contributo para um estudo dos limites do poder de controlo electrónico do empregador. Coimbra: Almedina, 2010.

O’NEIL, Cathy. Weapons of math destruction: How big data increases inequality and threatens democracy. New York: Crown, 2016.

PASQUALE, Frank. The black box society. Cambridge: Harvard University Press, 2015. DOI: https://doi.org/10.4159/harvard.9780674736061

SMITH, Adam. A riqueza das nações. 3. ed. São Paulo: Editora WMF Martins Fontes, 2016. V. I.

TURING, Alan M.; HAUGELAND, J. Computing machinery and intelligence. Cambridge, MA: MIT Press, 1950. DOI: https://doi.org/10.1093/mind/LIX.236.433

Downloads

Publicado

30-06-2024

Como Citar

Matias, J. L. N., & Morais Júnior, R. A. M. de. (2024). Discriminação algorítmica na relação de emprego: eficiência econômica, inteligência artificial e fragilidade do empregado. Revista Do Tribunal Superior Do Trabalho, 90(2), 128–147. https://doi.org/10.70405/rtst.v90i2.67

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.